समान परिमाण के तीन संगामी बल परस्पर साम्यावस्था में है। इन बलों के बीच के कोण क्या होंगे तथा बलों को भुजा के रुप में प्रदर्शित करने पर बनने वाले त्रिभुज का नाम क्या होगा
$120^°$, समबाहु त्रिभुज
$60^°$, समबाहु त्रिभुज
$120^°, 30^°, 30^°,$ एक समद्विबाहु त्रिभुज
$120^°$, एक अधिक कोण त्रिभुज
दो बलों का परिणामी, जिनमें से एक बल परिमाण में दूसरे का दोगुना है, अल्प परिमाण वाले पर लंलम्बवत्त है। दोनों बलों के बीच का कोण ........ $^o$ है
तीन लड़कियाँ $200\, m$ त्रिज्या वाली वृत्तीय बर्फीली सतह पर स्केटिंग कर रही हैं । वे सतह के किनारे के बिंदु $P$ से स्केटिंग शुरू करती हैं तथा $P$ के व्यासीय विपरीत बिंदु $Q$ पर विभिन्न पथों से होकर पहुँचती हैं जैसा कि चित्र में दिखाया गया है । प्रत्येक लड़की के विस्थापन सदिश का परिमाण कितना है ? किस लड़की के लिए यह वास्तव में स्केट किए गए पथ की लंबाई के बराबर है ।
दिया है $\mathop A\limits^ \to + \mathop B\limits^ \to = \mathop C\limits^ \to $ तथा $\mathop C\limits^ \to $, $\mathop A\limits^ \to $ के लम्बवत है इसके अतिरिक्त यदि $|\mathop A\limits^ \to |\, = \,|\mathop C\limits^ \to |,$तो $\mathop A\limits^ \to $ तथा $\mathop B\limits^ \to $ के बीच कोण होगा
निम्नलिखित असमिकाओं की ज्यामिति या किसी अन्य विधि द्रारा स्थापना कीजिए
$(a)$ $\quad| a + b | \leq| a |+| b |$
$(b)$ $\quad| a + b | \geq| a |-| b |$
$(c)$ $\quad| a - b | \leq| a |+| b |$
$(d)$ $\quad| a - b | \geq| a |-| b |$
इनमें समिका (समता) का चिह्न कब लागू होता है ?
सदिश $\overrightarrow{ A }$ और $\overrightarrow{ B } .$ इस प्रकार हैं कि $|\overrightarrow{ A }+\overrightarrow{ B }|=|\overrightarrow{ A }-\overrightarrow{ B }|$ इन दो सदिशों के बीच का कोण है